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Abstract
The theoretical study about the transient and stationary fluctuation theorems is
extended to include the effects of electromagnetic fields on a charged Brownian
particle. In particular, we consider a harmonic trapped Brownian particle under
the action of a constant magnetic field pointing perpendicular to a plane and
a time-dependent electric field acting on this plane. The electric field is seen
to be responsible for the motion of the center in the harmonic trap, giving as a
result a time-dependent dragging. Our study is focused on the solution of the
Smoluchowski equation associated with the over-damped Langevin equation
and also considers two particular cases for the motion of the harmonic trap
minimum. The first one is produced by a linear time-dependent electric field
and, in the second case an oscillating electric field produces a circular motion.
In this last case we have found resonant behavior in the mean work when the
electric field is tuned with Larmor’s frequency. Some comparisons are made
with other works in the absence of the magnetic field.

PACS number: 05.40.-a

1. Introduction

Fluctuation theorems (FTs) and related research have been of great interest in nonequilibrium
statistical physics of small systems in which the fluctuations play a fundamental role [1–47].
Much of the work done in developing and extending the theorems was accomplished by
theoreticians interested in nonequilibrium statistical mechanics. These theorems involve a
wide class of systems as well as several equilibrium and nonequilibrium quantities, including
the Helmholtz free energy [3], work [14], heat [15] and entropy production [21]. They can
be applied to steady state situations [14, 22] and the transient theorems allow us to go a
step further [14, 20, 21]. The FTs have been corroborated by both computer simulations
[20, 24–26, 29, 36] and experiments [26–29]. The first experiment performed to demonstrate
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the FT was reported by Wang et al [26], for a small system over short times. In this experiment
the trajectory of a colloidal particle is followed when it is captured in an optical trap that is
translated relative to surrounding water molecules. The experiment confirms a theoretically
predicted work relation associated with the integrated transient fluctuation theorem (ITFT),
which gives an expression for the ratio between the probability of finding the positive and
negative values of the fluctuations in the total work done on the system for a given time in
a transient state. However, the integrated stationary state fluctuation theorem (ISSFT) was
not observed. After the experiment by Wang et al [26] others were continued, for example
with colloidal particles in harmonic trap potentials [27, 28]. On the other hand, Blickle
et al [29] conducted another experiment to study an over-damped colloidal particle in a time-
dependent nonharmonic potential. They have shown the validity of a balance between work,
heat and energy, which looks like the first law applied to a stochastic trajectory. Also, the
Jarzinski equality (JE) and the work-fluctuation theorem are valid for this case. It was also
shown that nonharmonic potentials give rise to non-Gaussian work distributions. This fact
confirms not only the validity of FTs for Gaussian systems, white and colored noise [5], but
also for those situations where the underlying distributions are typically non-Gaussian. When
fluctuations are due to Lévy noise [6] or Poissonian shot noise [7], it has been proved that the
stationary state fluctuation theorem (SSFT) does not hold.

Inspired by Wangs et al’s experiment [26], and using a model of a Brownian particle
in a harmonic potential with a minimum moving arbitrarily, van Zon and Cohen (vZC) [14]
showed theoretically that all quantities of interest for these theorems and the corresponding
SSFT and the transient fluctuation theorem (TFT) hold. Our goal in this work is concentrated
on the generalization of such theorems to the case in which the Brownian harmonic oscillator
is electrically charged and it is in the presence of an electromagnetic field, assuming the
action of a Gaussian white noise. The magnetic field is considered as a constant and pointing
along the z-axis, and the electric field is considered as a space-independent but in general
a time-dependent vector which is responsible for the dragging of the potential minimum in
an arbitrary way. To achieve our goal we solve the Smoluchowski equation (SE) associated
with the charged Brownian harmonic oscillator in an electromagnetic field, by means of a
change of variable, defined by the X(t) variable, which involves a rotation matrix to account
for the effects of the magnetic field. The transition probability density associated with the
fluctuating variable X(t) is calculated explicitly for all time t > 0. Also, it is shown that it has
the Gaussian stationary distribution. Under these conditions we verify both the TFT and the
SSFT, whereas their integrated versions will only be commented.

It is important to note here that FTs including harmonic trap potentials have also been
verified recently for a swarm of independent Brownian harmonic oscillators in the presence of
an electromagnetic field [47]. In this reference, the somewhat unexpected Hall-type fluctuation
relation, firstly established by Roy and Kumar [11], is obtained as a particular case. FTs
have also been extended to more complex systems, such as colloidal particles trapped in
harmonic traps [26] and certain models for polymers [17, 18]. On the other hand, in the
case of nonlinear potentials one is not always able to give explicit solutions and therefore
numerical methods are very likely to be used [29], in this case the explicit solutions obtained
for linear problems can be used as an aid to validate the numerical computations. In fact,
recent numerical methods, expected to be used in the field of complex (dusty) plasmas [30]
(a well-established subdiscipline of plasma physics [31]), have been validated by comparing
them with the available analytical solutions for a Brownian harmonic oscillator in an external
magnetic field [32]. In the field of plasma physics, other problems have been studied in the
context of the Brownian motion [33, 34] and the FTs [35]. In the last work, Consolini et al [35]
have proved the validity of the FT for a problem related to the Earth’s magnetosphere, which
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evolves as an out-of-equilibrium system due to the coupling with the solar wind and the Earth’s
ionosphere. Although in this work we are not concerned with quantum considerations, it is
worth mentioning that the interest in the fluctuation relations is now included in the quantum
description [48–50].

The other quantity related to the work-fluctuation theorems is the JE, which relates
averages of non-equilibrium quantities to the equilibrium free-energy differences between
equilibrium states [3]. This equality has been verified experimentally in biological systems
[37]. The generalizations to arbitrary transitions between non-equilibrium stationary states
[42, 43] have also been verified in the experiment [28]. Recently, TFT has been proved for
the Brownian motion of a classical harmonic oscillator under the action of a magnetic field
[44–46], and the JE has been used in [44, 46] to show its consistency with the Bohr–van
Leeuwen (BvL) theorem in the absence of orbital diamagnetism in a classical system of
charged particles in thermodynamic equilibrium [51]. However, to the best of our knowledge,
the fluctuation relations and the JE for a charged harmonic oscillator in an electromagnetic
field have not been tested experimentally. Thus, our present results might in turn motivate
experimentalists to perform new experiments.

Our work is then structured as follows. In section 2, we introduce the complete
Langevin equation for the charged harmonic oscillator in an electromagnetic field and establish
the required conditions for the parameters to obtain the over-damped Langevin equation.
Section 3 is devoted to the definition of total work and we give the mathematical conditions
to calculate its properties. In section 4, we prove the validity of the TFT when the charged
Brownian particle is dragged in an arbitrary way by the time-dependent electric field. In
section 5, we give the proof for the SSFT and comment on the conditions under which the
integrated version of both theorems are valid. Two physical situations for the movement of the
potential’s minimum are studied in section 6. In the first case the minimum is dragged with
a linear constant velocity driven by the electric field, while in the second case this minimum
is forced to move by an oscillating electric field. In both cases, our theoretical results will
be compared with those calculated in [14], in the absence of the magnetic field. As a final
application, we use the TFT and JE to show that between two equilibrium states there is no
free energy differences, consistently with the BvL theorem. Our conclusions are given in
section 7.

2. The Langevin equation

Let us consider a charged Brownian particle with mass m and charge q in a harmonic trap
with a center driven by an external electric field E(t). The electric field is homogeneous but it
can be time dependent. Besides, a uniform magnetic field pointing along the z-axis is acting
upon it. The surrounding medium is at a temperature T and it produces a fluctuating force
f(t) = (fx, fy, fz), which satisfies the properties of Gaussian white noise with the zero mean
value 〈fi(t)〉 = 0 and a correlation function given by

〈fi(t)fj (t
′)〉 = 2λδij δ(t − t ′), (1)

with i, j = x, y, z and λ being a constant which measures the noise intensity and according to
the fluctuation–dissipation theorem is related to the friction constant by λ = γ k

B
T , k

B
being

Boltzmann’s constant. The Langevin equation corresponding to this system is then given as

m
dv
dt

= −γ v +
q

c
v × B − kr + qE(t) + f(t), (2)

where r is the position vector of the particle, γ is the friction coefficient and k is the restitutive
constant in the harmonic potential. The Langevin equation, as written in equation (2),
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represents Newton’s second law for a Brownian particle. In fact, it contains the systematic
force given by the Stokes friction, the harmonic force and the Lorentz force for a charged
particle. Besides, the fluctuating force f(t) takes into account the interaction of the Brownian
particle with the fluid in which it is immersed. Such an equation has a phenomenological
support which has been extensively used in the past. By the way, it is important to comment
that the first phenomenological study on diffusion of plasma in the crossed magnetic field was
performed by Taylor [56], in the context of the Langevin equation by assuming a fluctuating
electric field. Next, Kurs.unoǧlu [57] could extend the study using a description in terms of
probability densities. After these studies, several works on the same topic have arisen using
some other mathematical tools [30, 33, 58–60]. To the best of our knowledge, equation (2)
has not been derived from Hamiltonian dynamics as it is actually the case in the absence of
the magnetic field [61–63]. In equation (2), the electric field can be interpreted as responsible
for dragging the center of the harmonic trap; hence if we denote the position vector of the
center as r∗ in the harmonic trap, it can be written as r∗ = (q/k)E(t). For t = 0, the potential
minimum is located at the origin, r∗

0 = 0, whereas for t > 0, it moves with a velocity v∗(t)
driven by the electric field in such a way that ṙ(t) ≡ v∗(t) = (q/k)Ė(t). Now the Langevin
equation is written as follows:

m
dv
dt

= −γ v +
q

c
v × B − k(r − r∗) + f(t). (3)

Due to the fact that the magnetic field is pointing along the z-axis, equation (3) can be
decomposed into two independent differential equations, one is given on the x–y plane
perpendicular to the magnetic field and the other one along the z-axis parallel to the magnetic
field. Along the z-axis, the Langevin equation is the same z-component of the Langevin
equation studied in [14]. In this work, we will pay attention on the over-damped planar
Langevin equation, for which we first define the following quantities on the x–y plane: x as the
position vector, u the velocity vector, f̄(t) = (fx, fy) the fluctuating force and Ē(t) the electric
field. Also, the two-dimensional harmonic potential Ū and its corresponding harmonic force
F̄ are given by

Ū (x, t) = k

2
|x − x∗|2, F̄(x, x∗) = −k(x − x∗), (4)

where x∗ = (q/k)Ē(t) and ẋ∗ = u∗(t) = (q/k) ˙̄E(t). In this case the dragging
of the potential’s minimum depends on the electric field’s rate of change. The over-
damped approximation is satisfied when the parameters appearing in the Langevin equation,
equation (3), satisfy ω2 � ρ2[1 + (�/ρ)2], where � = qB/mc is Larmor’s frequency
and ρ = γ /m. This condition is equivalent to km � γ 2

e , where γe = γ (1 + C2) with
C ≡ �/ρ = qB/cγ being a dimensionless quantity. It is clear that γe plays the role of
an effective friction coefficient and it is clearly magnetic field dependent. Obviously, this
condition reduces to the usual one when the magnetic field is absent [14]. Therefore, in the
over-damped approximation the planar Langevin equation reads

dx
dt

= −γ̃ x − W̃x + �x∗ + k−1�f̄(t), (5)

where W̃ and � = γ̃ I + W̃ are given by

W̃ =
(

0 �̃

−�̃ 0

)
, � =

(
γ̃ �̃

−�̃ γ̃

)
, (6)

I being the unit matrix, γ̃ = k/γ (1 + C2) = k/γe and �̃ = kC/γ (1 + C2).
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Next, we separate the average motion of the charged Brownian particle from the stochastic
motion. For the average motion we propose the variable y∗ as the deterministic solution of
equation (5), that is

dy∗

dt
= −γ̃ y∗ − W̃y∗ + �x∗, (7)

with the initial condition y∗(0) = y∗
0 = 0. Now, we introduce the fluctuating variable

X = x − y∗, for which the Langevin equation reads

dX
dt

= −γ̃ X − W̃X + k−1�f̄(t). (8)

As we will see later on, we require the stationary probability density for the fluctuating
variable X. However, we can go further because we can calculate not only this stationary
probability but also the probability density for all time t > 0, through the explicit solution of
the Fokker–Planck (FP) equation associated with the fluctuating variable. The strategy of the
solution is given in terms of the following change of variable [47]:

X′ = eW̃ tX = x′ − y′∗, (9)

where x′ = eW̃ tx, y′ ∗ = eW̃ ty∗, and R(t) = eW̃ t is an orthogonal rotation matrix given by

R(t) =
(

cos �̃t sin �̃t

− sin �̃t cos �̃t

)
, (10)

and its inverse is given by R−1(t) = e−W̃ t . Clearly in the new space of coordinates we have

dy′∗

dt
= −γ̃ y′∗ + �x′∗, (11)

dX′

dt
= −γ̃ X′ + f̄′(t), (12)

with f̄′(t) = k−1 �R(t)f̄(t). The stochastic variable X′ satisfies the standard Ornstein–
Uhlenbeck process [52, 54] because the transformed noise f̄′(t) satisfies the same statistical
properties of Gaussian white noise than the original noise f̄(t). The associated FP equation
for the transition probability density P ′(X′, t |X′

0) is [47]

∂P ′

∂t
= γ̃ divX′(X′P ′) + λ̃∇2

X′P
′, (13)

with λ̃ = λ/γ 2(1 + C2). The solution to equation (13) is well known [47, 53–55], and reads

P ′(X′, t |X′
0) = βk

2π(1 − e−2γ̃ t )
exp

(
− βk|X′ − e−γ̃ tX′

0|2
2(1 − e−2γ̃ t )

)
, (14)

where P ′(X′, 0|X′
0) = δ(X′ − X′

0). According to transformation (9), the transition probability
density for the fluctuating variable X for all time t > 0 can readily be shown to be

P(X, t |X0) = βk

2π(1 − e−2γ̃ t )
exp

(
− βk|X − e−�tX0|2

2(1 − e−2γ̃ t )

)
. (15)

Clearly, the corresponding stationary distribution is given by Peq(X) = (βk/2π) e−(βk/2)|X|2 .
In a similar way, it is possible to consider the initial conditions as a Gaussian distribution given
by P(X0) = (βk/2π)e−(βk/2)|X0|2 , though the explicit calculation is not given.
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3. Transient fluctuation theorem for the total work

The work definition has given place to some difficulties because the total work contains some
terms responsible for the change in mechanical energy. In this work, we adopt the definition
of the dimensionless total work done on a system during a time τ as given in [14]:

W
tot
τ = 1

kBT

∫ τ

0
u∗ · F(x, x∗) dt. (16)

According to this definition and the developments done above, we calculate the statistical
properties of the total dimensionless work for the harmonic force defined in equation (4),
which in terms of the X variable (defined above equation (8)) can be written as

Wτ = −βk

∫ τ

0
[u∗ · X + u∗ · (y∗ − x∗)] dt, (17)

where β = 1/(kBT ). Equation (17) shows that the total work done on the system is
a linear function of the stochastic variable X. Accordingly, the statistical properties of
the dimensionless total work correspond to a Gaussian process. Therefore the probability
distribution P

T
of the total work can be written as follows:

P
T
(Wτ ) = 1√

2πV
T
(τ )

exp

(
− [Wτ − M

T
(τ)]2

2V
T
(τ )

)
, (18)

where we have defined M
T
(τ) ≡ 〈Wτ 〉 as the mean value of the work and V

T
(τ ) ≡

〈W2
τ 〉 − 〈Wτ 〉2 as its variance. The probability distribution written in equation (18) contains

the time evolution of the total work from the initial time up to time τ . This fact means that we
are studying the distribution corresponding to the transient situation. We will use the subscript
T for all quantities in the transient case. Taking into account that 〈X〉 = 0, the work mean
value reads

M
T
(τ) = −βk

∫ τ

0
u∗ · (y∗ − x∗) dt. (19)

On the other hand, the variance is only affected by the first term in equation (17), so that

V
T
(τ ) = (βk)2

∫ τ

0
dt1

∫ τ

0
u∗(t1) · 〈X(t1)X(t2)〉 · u∗(t2) dt2. (20)

In order to calculate the work mean value we need the solution for the y∗ variable, which can
be calculated from (11):

y′∗(t) = e−γ̃ ty′∗
0 +

∫ t

0
e−γ̃ (t−t ′)�x′∗(t ′) dt ′ = e−γ̃ ty′∗

0 + e−γ̃ t

∫ t

0
e�t ′�x∗(t ′) dt ′, (21)

where we made use of the relation � = γ̃ I + W̃ and R(t) = eW̃ t . Since y∗
0 = 0 then y′ ∗

0 = 0
and after integration by parts, equation (21) reduces to

y′∗(t) = x′∗(t) −
∫ t

0
e−γ̃ (t−t ′)R(t ′)u∗(t ′) dt ′, (22)

and therefore the solution for the y∗ variable reads

y∗(t) = x∗(t) − R−1(t)

∫ t

0
e−γ̃ (t−t ′)R(t ′)u∗(t ′) dt ′. (23)

By substituting equation (23) into equation (19) and after some algebra we can show that this
work mean value can be written as

M
T
(τ) = βk

∫ τ

0
dt ′

∫ t ′

0
e−γ̃ (t ′−t ′′)U∗(t ′) · U∗(t ′′) dt ′′, (24)
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where we have defined U∗(t) = R(t)u∗(t), which accounts for a rotation of the velocity u∗.
To evaluate the variance we take into account the symmetry of the time-correlation function
〈X(t1)X(t2)〉 under the interchange of t1 and t2; hence equation (20) can be written as

V
T
(τ ) = 2(βk)2

∫ τ

0
dt ′

∫ t ′

0
u∗(t ′) · 〈X(t ′)X(t ′′)〉 · u∗(t ′′) dt ′′. (25)

To continue the calculation we need the time correlation 〈X(t ′)X(t ′′)〉, which corresponds to
a stationary process, so that this time correlation can also be written as 〈X(t ′ − t ′′)X0〉. Also,
the solution for this variable can be obtained from equations (8) and (12) with the properties
of the matrix R(t), from which for all t � 0, it can be written as

X(t) = e−γ̃ tR−1(t)X0 + R−1(t)

∫ t

0
e−γ̃ (t−t ′)f̄′(t ′) dt ′. (26)

Since 〈X0X0〉 = (k
B
T /k)I and if 〈f̄(t)X0〉 = 0, we can show that for t � 0

〈X(t)X0〉 = (βk)−1 e−γ̃ tR−1(t)I, (27)

which implies that for t ′ � t ′′,

〈X(t ′ − t ′′)X0〉 = (βk)−1 e−γ̃ (t ′−t ′′)R−1(t ′)R(t ′′)I. (28)

With the direct substitution of equation (28) into equation (25) it can be verified that the
variance yields

V
T
(τ ) = 2βk

∫ τ

0
dt ′

∫ t ′

0
e−γ̃ (t ′−t ′′)U∗(t ′) · U∗(t ′′) dt ′′, (29)

and the comparison with equation (24) allows us to conclude that

V
T
(τ ) = 2M

T
(τ). (30)

Then, according to equations (18) and (30), we can write the ratio of the probability
distributions PT (Wτ ) and PT (−Wτ ) as follows:

P
T
(Wτ )

P
T
(−Wτ )

= e2M
T
(τ)Wτ /V

T
(τ ) = eWτ . (31)

Therefore, the TFT for the dragging of an electrically Brownian charged harmonic oscillator
in the presence of a uniform magnetic field and a time-varying electric field is also satisfied in
this case.

4. Stationary state fluctuation theorem for the total work

In this section we will consider the SSFT when an electromagnetic field is present. The SSFT
is formulated for the dimensionless total work done on the system, during the time interval
τ along a single trajectory in the stationary state. First of all, we consider the total work
given in equation (16) for the plane perpendicular to the magnetic field. In this case the total
dimensionless work done on the system over the time interval τ will be given as

Wτ,ti = β

∫ ti+τ

ti

F(x, x∗) · u∗ dt. (32)

We emphasize that this work will be calculated for a sequence of initial times ti and all
segments correspond to a time interval τ calculated along a single stationary state trajectory

7
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(i = 1, 2, 3, . . .). As a second step we recall that the stochastic variable X being a Gaussian
process has a Gaussian stationary state. This fact allows us to assure that the total work will
have the same property; therefore, the distribution of Wτ,ti for each ti is also Gaussian and
given by

Pti (Wτ,ti ) = 1√
2πVti (τ )

exp

(
− [Wτ,ti − Mti (τ )]2

2Vti (τ )

)
, (33)

where the mean value and the variance are respectively given by

Mti (τ ) = −βk

∫ ti+τ

ti

u∗ · (y∗ − x∗) dt, (34)

Vti (τ ) = 2βk

∫ ti+τ

ti

dt ′
∫ t ′

ti

e−γ̃ (t ′−t ′′)U∗(t ′) · U∗(t ′′) dt ′′. (35)

We also assume that for each ti large enough, Mti and Vti will reach steady state values,
and consequently become independent of ti. If in addition, the correlation between different
segments [ti , ti +τ ] and [tj , tj +τ ] decays sufficiently fast as |ti − tj | gets larger, the distribution
of Wτ,ti along a trajectory in the stationary state is given by

P
S
(Wτ,S ) = 1√

2πV
S
(τ )

exp

(
− [Wτ,S − M

S
(τ)]2

2V
S
(τ )

)
, (36)

where the subscript S denotes the distribution of Wτ,ti → Wτ,S over segments along the
stationary state trajectory. Thus for large time and according to equations (23) and (34), the
mean value is

M
S
(τ) = lim

t→∞ βk

∫ t+τ

t

dt ′
∫ t ′

0
e−γ̃ (t ′−t ′′)U∗(t ′) · U∗(t ′′) dt ′′, (37)

and according to equation (35), the variance reads

V
S
(τ ) = lim

t→∞ 2βk

∫ t+τ

t

dt ′
∫ t ′

t

e−γ̃ (t ′−t ′′)U∗(t ′) · U∗(t ′′) dt ′′. (38)

In equations (37)–(38), the integration limits make a difference when compared with equations
(24) and (29). This difference is manifested when we realized that the equality between V

S

and 2M
S

is not satisfied, in contrast with the transient case, where we have obtained that
V

T
= 2M

T
. The corresponding deviation can be calculated from

P
S
(Wτ )

P
S
(−Wτ )

= exp

(
Wτ

1 − ε(τ )

)
, (39)

where ε(τ ) represents the deviation between the mean value and the variance, and it is given
by

ε(τ ) = 2M
S
(τ) − V

S
(τ )

2M
S
(τ)

. (40)

The direct substitution of equations (37)–(38) in equation (40) leads us to the following
expression for the quantity ε(τ ):

ε(τ ) = 1

M
S
(τ)

lim
t→∞ βk

∫ t+τ

t

dt ′
∫ t

0
e−γ̃ (t ′−t ′′)U∗(t ′) · U∗(t ′′) dt ′′, (41)
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which according to equation (23) can be written as

ε(τ ) = 1

M
S
(τ)

lim
t→∞ βk(x∗ − y∗) ·

∫ τ

0
e−γ̃ t ′U∗(t + t ′) dt ′. (42)

In equation (42) the denominator corresponds to the total dimensionless work done of the
system in the stationary state in time τ . In the numerator, the exponential in the integral will
make the integral bounded for large time τ , provided that U∗(t) does not grow exponentially in
time with an exponent bigger than the relaxation time τ̃r = γ̃ −1. We note that this relaxation
time depends on the magnetic field. Then ε(τ ) approaches to zero proportionally to 1/τ as τ

goes to infinity; hence

ε(τ ) → 0 as τ → ∞. (43)

As a consequence we obtain that

V
S
(τ ) → 2M

S
(τ) as τ → ∞, (44)

and the SSFT holds, that is

P
S
(Wτ,S )

P
S
(−Wτ,S )

→ eWτ,S as τ → ∞. (45)

Once we have proved the TFT and SSFT given respectively by equations (31) and (45),
we can prove the integrated version of these theorems following similar steps as established
in [14]. It is important to note that the magnetic field can drive to different effects, though the
formal structure is similar.

5. Applications

Here we will study two cases in which the two-dimensional harmonic trap potential is moving.
In the first case, we assume that the electric field depends linearly on time E(t) = (E t, E t),
so the potential minimum is dragged with uniform velocity (linear motion). This is the same
kind of motion studied by Jayannavar and Sahoo [44] to verify the BvL theorem [51] using
the JE. As a second application, we will consider an oscillating electric field which produces a
circular motion in the minimum of the harmonic trap [14]. Both physical models can be used
in principle by experimentalists to corroborate the work-fluctuation theorems, as has been
done in the absence of a magnetic field.

5.1. Linear electric field in the transient case

In this first case, the position vector for the potential minimum can be written as x∗ =
(q/k)E t = (ut, ut), meaning that the electric field drags the minimum of the trap with a
constant velocity u∗ = uopt(1, 1), where uopt = (q/k)E is the so-called optical speed and E
is the amplitude of the electric field per unit time. The calculations for the total work mean
value and its variance are explicitly given in appendix A. In this case both quantities are given
respectively by

M
T
(τ) = 2� {τ − τr(1 − C2)[1 − e−τ/̃τr cos(�̃τ )] − 2τrC e−τ/̃τr sin(�̃τ )}, (46)

V
T
(τ ) = 2M

T
(τ), (47)

where � = βγ u2
opt = βγ (qE)2/k2 stands as the dimensionless work delivered to the system

per unit time. Equation (46) multiplied by the factor β−1 is the total work mean value defined

9
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in equation (16), and it is exactly the same as the one calculated by Jayannavar and Sahoo in
[44], by an alternative method. In the absence of the magnetic field (C = 0), the transient
dimensionless work mean value reduces to M

T
(τ) = 2� {τ − τr [1 − e−kτ/γ ]}, which is the

same expression calculated by van Zon and Cohen [14] and Mazonka and Jarzynski [19]
except by the factor 2 which comes from the planar character of the vector u∗.

5.2. Linear electric field in the stationary case

In appendix A we have shown that the work mean value and its variance read

M
S
(τ) = 2�τ, (48)

V
S
(τ ) = VT (τ) = 2M

T
(τ). (49)

On the other hand, the deviation ε(τ ) defined in equation (40) is given by

ε(τ ) = 1

τ
{τr(1 − C2)[1 − e−τ/̃τr cos(�̃τ )] + 2Cτr e−τ/̃τr sin(�̃τ )}, (50)

which is proportional to 1/τ and it is clear that ε(τ ) → 0 as τ → ∞. Thus, according to
equation (44) we have that V

S
(τ ) = 2M

S
(τ) and consequently the SSFT holds. In addition,

this equality can be obtained from equations (48) and (49) because from equation (47) we see
that for large τ , M

T
(τ) is proportional to τ and therefore M

T
(τ) = M

S
(τ).

5.3. Oscillating electric field in the transient case

As a second example, let us consider an oscillating electric field driving the potential minimum
into a circular motion. Now, its position vector is given as x∗(t) = r(sin �0t, (1−cos �0t)) for
t � 0, r = qE/k is the radius of the circle and E is the amplitude of the electric field taken as a
constant. Thus, the dragging velocity is u∗(t) = uopt(cos �0t, sin �0t), and uopt = r�0 is the
corresponding optical speed. In appendix B the transient mean value of the total dimensionless
work is explicitly calculated. Its value and the corresponding variance are given as follows:

M
T
(τ) = �e

{
τ − τ̃r

2̃τr�̂ e−τ/̃τr sin(�̂τ )

1 + τ̃ 2
r �̂2

− τ̃r

[
1 − τ̃ 2

r �̂2
]
[1 − e−τ/̃τr cos(�̂τ )]

1 + τ̃ 2
r �̂2

}
, (51)

V
T
(τ ) = 2M

T
(τ), (52)

where �e is the work per unit time given by

�e = βγeu
2
opt

(1 + τ̃ 2
r �̂2)

, (53)

and �̂ = �0 − �̃. At this point it is very interesting to note that in the special case
where �0 = �̃, the mean value of the total work has a maximum given by M

T
(τ) =

βγeu
2
opt[τ − τ̃r (1 − e−τ/̃τr )]. In fact, in figures 1 and 2, we show the symmetric behavior

around the maximum of a reduced value of (51), that is M
T

≡ M
T
(τ)/̃τrβγe u2

opt, as a function
of the dimensionless variables x = τ/̃τr and y = �̂ τ̃r . Thus, the maximum means that we
have a resonance caused by the tuning in the electric field with the Larmor frequency. In other
words we have a case where both the magnetic and the oscillating electric field are tuned,
giving place to a resonant situation which can be explored by an experimental device.

10
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Figure 1. The reduced value of the total work M
T

as a function of y for a fixed value of x = 50.
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Figure 2. The reduced value of the total work M
T

as a function of y for a fixed value of x = 0.5.

On the other hand, we can compare our result with that calculated in [14] in the case
where the minimum in the potential is forced to obey circular motion and, in the absence
of the magnetic field. In this case �̃ = 0 and hence the frequency �̂ = �0, the effective
friction coefficient γe = γ , the relaxation time τ̃r = τr = γ /k, and therefore equation (51)
reduces to

M
T
(τ) = ψ

{
τ − τr

2τr�0 e−τ/τr sin(�0τ)

1 + τ 2
r �2

0

− τr

[
1 − τ 2

r �0
]
[1 − e−τ/τr cos(�0τ)]

1 + τ 2
r �2

0

}
, (54)

where

ψ = βγ r2�0

(1 + τ 2
r �2

0)
. (55)
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5.4. Oscillating electric field in the stationary case

In appendix B, we have calculated explicitly the work mean value and its corresponding
variance which are given by

M
S
(τ) = 2�eτ (56)

V
S
(τ ) = V

T
(τ ) = 2M

T
(τ). (57)

Now, the ε(τ ) parameter is directly calculated as

ε(τ ) = τ̃r

τ
(
1 + τ̃ 2

r �̂2
) {2̃τr�̂ e−τ/̃τr sin(�̂τ ) +

[
1 − τ̃ 2

r �̂2
]
[1 − e−τ/̃τr cos(�̂τ )]}, (58)

which also vanishes like 1/τ as τ → ∞; therefore VS = 2M
S

consistently with the
SSFT. Also, this identity can be obtained from equation (57), in fact taking into account
equation (51), it can be checked that M

T
(τ) → 2�eτ = M

S
(τ) as τ → ∞.

5.5. The Jarzynski equality

It is well known that the JE [3] relates the nonequilibrium work done on a system W to
the equilibrium free energy differences �F , that is 〈e−βW 〉 = e−β�F . In the transient case,
and according to equations (18) and (30), we can show that 〈e−βWtot〉 = 1, from which we
can conclude that �F = 0, consistently with the BvL theorem in the absence of orbital
diamagnetism in a classical system of charged particles in thermodynamic equilibrium [51].

6. Concluding remarks

We have verified the validity of the work-fluctuation theorems for a charged Brownian
harmonic oscillator under the influence of an electromagnetic field. Though the results given
in equations (31) and (45) may be seen as a generalization of the FTs to the case where an
electromagnetic field is present, we have found an interesting effect caused by the magnetic
field. First, we have shown that the work mean values given by equations (24) and (37)
have a very similar algebraic structure than those given in [14], except by the time-varying
function U∗(t) = R(t)u∗(t) = (q/k)R(t) ˙̄E(t), which is nothing else but the time-dependent
rotation of the rate of change of the applied electric field. Similar situations occur for the
variances given by equations (29) and (38). In the absence of the magnetic field (C = 0), the
rotation matrix R(t) reduces to the unit matrix and therefore U∗(t) = u∗(t), so that all of those
results (24), (37), (29) and (38) are exactly the same as those obtained in [14], with arbitrary
u∗(t). Our results have been obtained due to the fact that we have been able to show that
the fluctuating variable X has a stationary state Gaussian distribution, which has been easily
obtained from the explicit calculation of the Gaussian probability density for all time t > 0
given by equation (15). The initial distribution for the X0 variable is assumed to be Gaussian
and corresponds to the same as that of the stationary state.

The results obtained in the two particular situations studied as applications in this work can
be compared with those obtained in [14] in the absence of the magnetic field. Our theoretical
results reduce exactly to those calculated in that reference, as it should be. On the other hand,
equation (46) multiplied by the factor k

B
T is exactly the same work mean value calculated by

Jayannavar and Sahoo [44] to verify the JE. In the stationary case, equations (46), (49), (56)
and (57) establish that the SSFT theorem holds for times large enough, provided a stationary
equilibrium state exists. It should be noted that the second application is referred to in terms
of an oscillating electric field; this fact has allowed us to identify a kind of resonant behavior

12
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when both Larmor’s frequency and the one corresponding to the electric field are equal. In this
case, the work done on the system is symmetric with respect to the difference in frequencies
and when they are equal, it presents a maximum. This effect, as well as the Hall fluctuation
relations reported recently [11, 47], constitute some examples which are present because the
magnetic field acts on the system.

Finally, as stated by van Zon and Cohen [14], the rectilinear motion model corresponds
to the situation in the experiment of Wang et al [26], but they suggest that the circular motion
might be implemented in a future experiment. In a similar way, our proposal might also be
implemented in future experiments taking into account the presence of an electromagnetic
field, in the two physical situations studied in this work, linear and oscillating electric field.
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Appendix A. Linear motion for the potential minimum

A.1. The transient case

For linear motion we have that x∗ = (q/k)Ē(t) = (ut, ut) and thus u∗ = uopt(1, 1),
where uopt = (q/k)E and E is the amplitude of the electric field per unit time. In this
case U∗(t) = R(t)u∗(t) = uoptR(t)(1, 1). So the transitory mean value of the total work
given by equation (24), after explicit calculations, reads

M
T
(τ) = 2βku2

opt

{∫ τ

0
e−γ̃ t ′ cos(�̃t ′) dt ′

∫ t ′

0
eγ̃ t ′′ cos(�̃t ′′) dt ′′

+
∫ τ

0
e−γ̃ t ′ sin(�̃t ′) dt ′

∫ t ′

0
eγ̃ t ′′ sin(�̃t ′′) dt ′′

}
, (A.1)

where ∫ t ′

0
eγ̃ t ′′ cos(�̃t ′′) dt ′′ = 1

2γ̃1
(eγ̃1t

′ − 1) +
1

2γ̃2
(eγ̃2t

′ − 1), (A.2)

∫ t ′

0
eγ̃ t ′′ sin(�̃t ′′) dt ′′ = −i

2γ̃1
(eγ̃1t

′ − 1) +
i

2γ̃2
(eγ̃2t

′ − 1), (A.3)

and γ̃1 = γ̃ + i �̃ and γ̃2 = γ̃ − i �̃. By substituting equations (A.2), (A.3) into equation (A.1)
and after some algebra we have

M
T
(τ) = 2βku2

opt

{
1

2

(
1

γ̃1
+

1

γ̃2

)
τ +

1

2γ̃1γ̃1

(
e−γ̃1τ − 1

)
+

1

2γ̃2γ̃2

(
e−γ̃2τ − 1

)}
, (A.4)

or explicitly

M
T
(τ) = 2� {τ − τr [1 − e−τ/̃τr cos(�̃τ )] − 2τrC e−τ/̃τr sin(�̃τ )

+ τrC
2[1 − e−τ/̃τr cos(�̃τ )]}, (A.5)

where � = βγu2
opt. The variance, according to equation (30) of section 3, is then V

T
(τ ) =

2M
T
(τ).
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A.2. The stationary case

In this case the mean value of the total work, according to equation (38), is given by

M
S
(τ) = 2βku2

opt lim
t→∞

{ ∫ t+τ

t

e−γ̃ t ′ cos(�̃t ′) dt ′
∫ t ′

0
eγ̃ t ′′ cos(�̃t ′′) dt ′′

+
∫ t+τ

t

e−γ̃ t ′ sin(�̃t ′) dt ′
∫ t ′

0
eγ̃ t ′′ sin(�̃t ′′) dt ′′

}
. (A.6)

In equation (A.6) we can use the results of equations (A.2) and (A.3), and after straightforward
integrations we get

M
S
(τ) = 2βku2

opt lim
t→∞

{
1

2

(
1

γ̃1
+

1

γ̃2

)
τ +

e−γ̃1t

2γ̃1γ̃1
(e−γ̃1τ − 1)

+
e−γ̃1t

2γ̃2γ̃2
(e−γ̃2τ − 1)

}
, (A.7)

and therefore as the time t → ∞, it can easily be shown that M
S
(τ) = 2� τ . On the other

hand, the variance in this stationary case must be calculated from equation (38) yielding the
following:

V
S
(τ ) = 4βku2

opt lim
t→∞

{ ∫ t+τ

t

e−γ̃ t ′ cos(�̃t ′) dt ′
∫ t ′

t

eγ̃ t ′′ cos(�̃t ′′) dt ′′

+
∫ t+τ

t

e−γ̃ t ′ sin(�̃t ′) dt ′
∫ t ′

t

eγ̃ t ′′ sin(�̃t ′′) dt ′′
}
. (A.8)

From this we show that∫ t ′

t

eγ̃ t ′′ cos(�̃t ′′) dt ′′ = 1

2γ̃1
(eγ̃1t

′ − eγ̃1t ) +
1

2γ̃2
(eγ̃2t

′ − eγ̃2t ), (A.9)

∫ t ′

0
eγ̃ t ′′ sin(�̃t ′′) dt ′′ = −i

2γ̃1
(eγ̃1t

′ − eγ̃1t ) +
i

2γ̃2
(eγ̃2t

′ − eγ̃1t ). (A.10)

By substituting equations (A.9) and (A.10) into equation (A.8), after evaluating the integrals
and taking t → ∞, it can be shown that

V
S
(τ ) = 4βku2

opt

{
1

2

(
1

γ̃1
+

1

γ̃2

)
τ +

1

2γ̃1γ̃1
(e−γ̃1τ − 1) +

1

2γ̃2γ̃2
(e−γ̃2τ − 1)

}
. (A.11)

If we compare equation (A.11) with equation (A.4), we conclude that V
S
(τ ) = 2M

T
(τ).

Appendix B. Circular motion for the potential minimum

B.1. The transient case

For the circular motion we also consider the time-dependent position vector x∗(t) =
r(sin �0t, (1 − cos �0t)) such that r = qE/k is the radius of the circle and E the constant
amplitude of the electric field. So the velocity is u∗(t) = r�0(cos �0t, sin �0t) and the total
work mean value, according to equation (24), reads

M
T
(τ) = βkr2�2

0

{ ∫ τ

0
e−γ̃ t ′ cos(�̂t ′) dt ′

∫ t ′

0
eγ̃ t ′′ cos(�̂t ′′) dt ′′

+
∫ τ

0
eγ̃ t ′ sin(�̂t ′) dt ′

∫ t ′

0
e−γ̃ t ′′ sin(�̂t ′′) dt ′′

}
, (B.1)
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where now �̂ ≡ �0 − �̃. We can see that the integrals of equation (B.1) have the same
algebraic structure as those given in equation (A.1), and therefore we arrive at a similar
expression as that displayed in equation (A.4). In this case the transient work mean value is
then

M
T
(τ) = βkr2�2

0

2

{(
1

�̃1
+

1

�̃2

)
τ +

1

�̃1�̃1

(
e−�̃1τ − 1

)
+

1

�̃2�̃2

(
e−�̃2τ − 1

)}
, (B.2)

where �̃1 = γ̃ + i �̂ and �̃2 = γ̃ − i �̂. Explicitly this mean value can be written as

M
T
(τ) = �e

{
τ − τ̃r

2̃τr�̂ e−τ/̃τr sin(�̂τ )

1 + τ̃ 2
r �̂2

− τ̃r

[
1 − τ̃ 2

r �̂
]
[1 − e−τ/̂τr cos(�̂τ )]

1 + τ̃ 2
r �̂

}
, (B.3)

and �e is defined as

�e = βγer2�2
0(

1 + τ̃ 2
r �̂2

) . (B.4)

The variance is again (see equation (30) V
T
(τ ) = 2M

T
(τ).

B.2. The stationary case

In this case we have from equation (37) that the work mean value is

M
S
(τ) = βkr2�2

0 lim
t→∞

{ ∫ t+τ

t

e−γ̃ t ′ cos(�̂t ′) dt ′
∫ t ′

0
eγ̃ t ′′ cos(�̂t ′′) dt ′′

+
∫ t+τ

t

e−γ̃ t ′ sin(�̂t ′) dt ′
∫ t ′

0
eγ̃ t ′′ sin(�̂t ′′) dt ′′

}
. (B.5)

Again, the integrals of equation (B.5) are very similar to those given in equation (A.6), and
therefore they also lead to a similar expression to that given by equation (A.7), that is

M
S
(τ) = βkr2�2

0 lim
t→∞

{
1

2

(
1

�̃1
+

1

�̃2

)
τ +

e−�̃1t

2�̃1�̃1
(e−�̃1τ − 1)

+
e−�̃1t

2�̃2�̃2
(e−�̃2τ − 1)

}
. (B.6)

From this equation we easily check that as the time t → ∞, M
T
(τ) = �eτ .

Finally the variance, according to equation (38), is given by

V
S
(τ ) = 2βkr2�2

0 lim
t→∞

{ ∫ t+τ

t

e−γ̃ t ′ cos(�̂t ′) dt ′
∫ t ′

t

eγ̃ t ′′ cos(�̂t ′′) dt ′′

+
∫ t+τ

t

e−γ̃ t ′ sin(�̂t ′) dt ′
∫ t ′

t

eγ̃ t ′′ sin(�̂t ′′) dt ′′
}
. (B.7)

The integrals of equation (B.7) are quite similar to those given in equation (A.8), so that also
after integrations and taking t → ∞, we arrive at a similar expression to equation (A.11), that
is

V
S
(τ ) = βkr2�2

0

{(
1

�̃1
+

1

�̃2

)
τ +

1

�̃1�̃1
(e−�̃1τ − 1) +

1

�̃2�̃2
(e−�̃2τ − 1)

}
, (B.8)

which according to equation (B.2) shows that V
S
(τ ) = 2M

T
(τ),
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